TECHNICAL REPORT 2

BUILDING AND PLANT

ENERGYANALYSIS

Adam Bernardo

Mechanical Option Faculty Advisor: Dr. William Bahnfleth Date Submitted: 10/19/11 **New Braunfels, TX**

Table of Contents
(1.0) Executive Summary
(2.0) Building Overview
(3.0) Design Load Estimation Procedure
(3.1) Load Calculation Assumptions
(3.2) Weather Data
(3.3) Building Envelope
(3.4) Design Loads
(3.4.1) Design Occupancy and Ventilation
(3.4.2) Lighting and Miscellaneous Loads
(4.0) Design Load Estimation Results
(4.1) System Analysis
(4.2) Zone Analysis
(5.0) Energy Consumption and Operating Costs
(5.1) Annual Energy Consumption
(5.2) Equipment Operating Costs
(5.3) System Emissions14
(6.0) Report Conclusions
Appendix A: Resources
Appendix B: ASHRAE Weather Data Sheet
Appendix C: Interior Zone Checksums

List of Figures

Figure 1: RTU Areas	8
Figure 2: Building Zones	
Figure 3: Zone Cooling Load Percentages	11
Figure 4: Monthly Electrical Energy Consumption	12
Figure 5: Equipment Electricity Percentages	
Figure 6: Monthly Natural Gas Consumption	
Figure 7: Monthly Operating Costs	14
Figure 8: NERC Interconnections Map	14
Figure 9: Annual Pollutant Mass	

List of Tables

6
7
7
9
.10
.12
.13
15
.15
15

(1.0) Executive Summary

This report describes the building and plant energy analysis performed on the New Braunfels Regional Rehabilitation Hospital (NBRRH) using Trane Trace 700 software. Included in this report are a summary of the design load estimation, an analysis of these results, and an energy and operating cost study. In order to run a complete load calculation and energy model, factors such as weather data and building construction had to be considered, and a number of assumptions about the building and occupant and process loads had to be made.

The results of the load estimation were analyzed in two different ways: by a broader, system-level approach and by a detailed, zone-level approach. Both analyses yielded peak heating and cooling load results that were much lower than expected values based on ASHRAE Fundamentals values and the actual designed capacity of existing systems.

The facility as a whole is modeled to use about 108 tons of cooling, while the design documents prescribe systems with a capacity of about 169 tons of cooling. The heating load of the Trace model came out to be about 550 MBh and was similarly lower than the designed systems, which prescribe 1,320 MBh of heating. A likely cause of these discrepancies is the assumption of the miscellaneous loads in circulation and therapy areas, as discussed in this report.

Using the loads calculated by the Trace model, an energy and economic analysis was also performed on the NBRRH. Though the model may be underestimating the energy used in the actual facility, this analysis is still useful because it gives a clear picture of which areas of the building are comparatively using the most energy and where improvements could be made.

The cooling system was determined to be the largest energy consumer in the building, which is expected for a facility in the American southwest. The monthly energy and operating cost profiles included in this report are good indications of the distribution of energy use throughout the year and could be used to make energy- and cost-saving decisions to improve the facility.

Also included in this report is a summary of harmful emissions as a result of the energy use discussed. Carbon dioxide, equivalent carbon dioxide, and solid waste were determined to be the pollutants emitted in the largest quantity, though several other harmful pollutants occur as a result of the mechanical heating and cooling processes.

(2.0) Building Overview

Facility Description

The New Braunfels Regional Rehabilitation Hospital is a 40-bed, acute-care hospital and physical rehabilitation clinic located about 30 miles northeast of San Antonio, Texas. Managed by Ernest Health, Inc., the nearly 50,000 square foot facility is located on a several hundred thousand square foot site that was previously a country club. Ernest Health operates 14 similar acute-care hospitals in various regions of the United States.

All of the patient rooms and hospital-specific functions are located in the northern wing of the building, which is arranged in a cross design. The south-facing sections of the building house public functions with a large amount of glazing. These include administrative offices, the entrance lobby and reception area, and the physical therapy and exercise room. Other functions included in the southern wing of the facility are the hospital's kitchen and patient dining areas, exam and therapy rooms, service rooms, and additional office space.

Mechanical System Overview

Three packaged rooftop units supply most of the facility with conditioned air. Each of these units is aircooled and utilizes gas-fired heating. One 26,000 CFM unit serves the entire north patient wing of the building with air for ventilation and space conditioning. The other two units, totaling 29,500 CFM, serve the therapy, administrative, and kitchen/dining functions of the facility.

All zones are supplied by VAV terminal units and utilize a fully-ducted return system. Two gas-fired boilers provide heating hot water to reheat coils located in the VAV boxes at zone level. For the purpose of this load estimation and energy model, these boilers are not included and reheat occurs at the system level. This makes for a more manageable model and still provides an accurate estimation of the heating load and combustion gas consumed by the facility.

(3.0) Design Load Estimation Procedure

The heating and cooling loads for the New Braunfels Regional Rehabilitation Hospital were estimated using Trane Trace 700 software. The building itself and mechanical systems were modeled using mechanical and architectural design drawings and documents along with a number of assumptions and data, outlined in this report. Because of the manageable size of the facility, a room-by-room method was used to estimate the loads on the building.

(3.1) Load Calculation Assumptions

To perform the load estimation, several general assumptions were made that both accurately simulate design conditions and make the estimation easier to accomplish. It was assumed that the facility is fully operational at all times of the day throughout the entire year. This assumption is valid because of the critical functions occurring in the spaces and makes a difference in load profiles because spaces will need to be heated, cooled, and ventilated around the clock. Additionally, there were simplifications made to some design load data in order to make the modeling process time-efficient.

(3.2) Weather Data

Typical weather data for San Antonio, TX was obtained from the 2009 ASHRAE Handbook of Fundamentals. The measurements for this data were taken at the San Antonio International Airport, approximately 32 miles from the facility, so the data was assumed to be an accurate representation of the weather conditions that the site will see. A summary of the design conditions is shown in Table 1 below, while the entire ASHRAE Weather Data Sheet is provided in Appendix B. The listed design cooling and heating conditions are 0.4% and 99.6% values, respectively.

Table 1:	ASHRAE	Weather	Data

Design Condition	Outdoor DB	Outdoor WB	DB Range	Indoor Design DB
Cooling	98.5 °F	73.5 °F	20.1 °F	75 °F
Heating	27.4 °F	-	-	72 °F

(3.3) Building Envelope

Building U-Factors were obtained from the basis of design performed by JBA Consulting Engineers and confirmed by the architect's model in Autodesk's Revit Architecture program. These values are shown in Table 2 on the next page. All exterior walls in the facility have a structure of 6" metal studs with insulation and have a gypsum wall board interior face. Two exterior facades exist in the facility, so for the purpose of this analysis an average U-Factor was used for all exterior faces. All exterior glazing, including components of the southeast curtain wall system, was assumed to have the same U-Factor and shading coefficient.

Envelope Element	Description	U-Factor (BTU/hr-ft ² -°F)	Shading Coefficient
Floor Slab	4" HW Concrete	0.6587	-
Roof	Insulated Metal Deck	0.03569	-
Exterior Walls	Steel Frame, 6" Insulation	0.05543	-
Glazing	Steel Framed, Double-Pane	0.35	0.95

Table 2: Building Envelope U-Factors

(3.4) Design Loads

Design loads used in this load estimation are shown below in Table 3 and discussed in the following two sections.

Table 5: Design Load	People	Equipment	Lighting	Ventil	ation
Template Name	SF/Person	W/SF	W/SF	CFM/Person	CFM/SF
Breakroom	33.3	0.5	1.2	5	0.06
Classroom	20	0.5	1.4	10	0.12
Conference	20	0.5	1.3	5	0.06
Corridor	0	0.0	1.0	0	0.06
Custodian	0	0.0	0.9	0	0.12
Dining	10	0.0	0.9	7.5	0.18
Electrical	0	20.0	1.5	0	0.06
Files	0	0.0	1.1	0	0.12
Gym/Exercise	50	2.0	0.9	20	0.06
Kitchen	0	1.0	1.2	0	0
Laundry	0	5.0	0.6	7.5	0.06
Lobby	16.7	0.0	1.3	5	0.06
Locker Room	0	0.0	0.6	0	0
Mechanical	0	10.0	1.5	0	0.06
Nurse Station	143	0.5	1.0	5	0.06
Office	143	0.5	1.1	5	0.06
Pool	50	0.0	0.9	20	0.06
Restroom	0	0.0	0.9	0	0
Storage	0	0.0	0.9	0	0.12
Vestibule	0	0.0	1.3	0	0
Template Name	# of People	Equipment	Lighting	Ventil	ation
Template Maine	" or reopie	W/SF	W/SF	Air Chan	ges/Hour
Bathing	2	2.0	0.9	1	0
Body Holding	0	2.0	0.9	1	0
Clean Linen Storage	0	0.0	0.9	2	
Medical Storage	0	0.0	1.4	8	
Patient Room	2	2.0	0.7	6	
Patient Toilet	1	0.0	0.9	1	0
Pharmacy	3	2.0	1.2	4	1
Soiled Linen Storage	0	0.0	0.9	1	0
Therapy	2	1.0	1.5	e e e e e e e e e e e e e e e e e e e	5

Table 3: Design Load Summary

(3.4.1) Design Occupancy and Ventilation

The design occupancy for spaces in the administrative, dining, and physical therapy areas were determined using the preset occupancy values in the Trace program based on the use of the space. In the hospital-specific spaces of the building, the occupancy density used by the mechanical

engineer was used when available. If these values were not available, a reasonable estimate was made based on room function.

The ventilation requirements for the administrative, dining, and physical therapy areas were determined using Table 6-1 of ASHRAE Standard 62.1-2007 because this method was also used by the mechanical designer to calculate ventilation airflows. In the hospital-specific areas of the facility, Table 7-1 of ASHRAE Standard 170 was used to determine the required air changes per hour for this ventilation estimation.

(3.4.2) Lighting and Miscellaneous Loads

Lighting power densities used to generate lighting loads in the Trace model are based on Table 2 in Chapter 18 of ASHRAE Fundamentals 2009. The miscellaneous loads used in the model are based on this user's judgment of the likely equipment to be in the space. Safety factors or overestimating was not used in these load assumptions as an attempt to estimate an accurate heating and cooling load.

(4.0) Design Load Estimation Results

Two different approaches were taken to analyze the results of the load calculation performed by the Trace model. First, a system analysis was performed where the modeled loads on each RTU were compared to the existing RTUs, as designed. Following this, a more detailed zone analysis was conducted in order to determine the major contributors to these loads and to identify any spaces that were using an unexpected amount of energy for heating or cooling. These two analyses are shown in the following two sections.

(4.1) System Analysis

Shown in Figure 1 below are the areas that each of the rooftop units serve. RTU-1 delivers conditioned air to patient rooms and hospital-related functions in the northern wing of the facility. The physical therapy and exercise areas are served by RTU-2, and RTU-3 primarily serves the kitchen and dining area as well as administrative and back-of-house functions.

Figure 1: RTU Areas

Results of the load estimation for each system are shown in Table 4 below, which also compares these results to the as-designed systems. A number of discrepancies exist between the modeled and existing systems.

Tuble 4. System Lever Loud Comparison									
	System	Area (SF)	Exterior Wall Area (SF)	Glazing Area (SF)	Cooling Load (tons)	Supply Airflow (CFM)	Heating Load (MBh)	SF/Ton (Cooling)	CFM/SF
	RTU-1	22215	13085	1719	41.3	12962	241.3	538	0.583
Modeled	RTU-2	11378	5460	1977	32.3	8789	172.1	352	0.772
	RTU-3	10456	6203	593	34.2	6150	136.3	306	0.588
	Totals:	44049	24748	4289	107.8	27901	549.7	409	0.633
	RTU-1	22215	13085	1719	76.1	26000	520.0	292	1.170
As Designed	RTU-2	11378	5460	1977	34.8	12000	400.0	327	1.055
	RTU-3	10456	6203	593	57.2	17500	400.0	183	1.674
	Totals:	44049	24748	4289	168.1	55500	1320	262	1.260

Table 4: System-Level Load Comparison

The modeled heating load is less than half of the designed heating capacity for all three units. An explanation for this could be that, when designed, the heating capacity of the units may have been increased due to concerns of occupant safety and comfort.

Systems RTU-1 and RTU-3 also have significantly higher cooling capacities than what was estimated by the Trace load calculation. A likely cause of this difference is that the mechanical engineer may have used more conservative assumptions for process or miscellaneous power densities in these areas.

The modeled system has a relatively high square footage per ton of cooling when compared to ASHRAE Fundamentals, which gives a rule of thumb of about 275 SF/Ton for a hospital. The most likely cause is again the lack of knowledge of the process loads in the facility. If miscellaneous and receptacle loads are increased in the model, systems would have increased cooling loads and the square footage per ton of cooling would reduce to a more expected level.

(4.2) Zone Analysis

Following the broad system analysis, the same results were analyzed at a custom-created zone level to pinpoint the areas of the building where the model may be under-estimating the heating or cooling loads. Zones were created by segregating interior rooms from rooms with exterior walls. Exterior zones were then determined by the direction that they faced or the primary functions of a zone. Figure 2 on the next page shows the breakdown of the zones.

Figure 2: Building Zones

Table 5 below shows a summary of each zone's characteristics and modeled loads. The zones with the smallest cooling load per area are Zones 5 and 6, the interior zones of the building. To improve the accuracy or practicality of this model, a closer look at circulation and interior therapy spaces could be taken. Expectedly, the interior loads dominate in these two zones, according to the checksums for these zones supplied in Appendix C of this report. The people and miscellaneous loads that the model generates, however, are not as high of a portion of the interior load as expected.

Zone	Area (SF)	Exterior Wall Area (SF)	Glazing Are a (SF)	Cooling Load (tons)	Cooling Airflow (CFM)	Heating Load (MBh)	Heating Airflow (CFM)	SF/Ton (Cooling)
1 - West Patient Rooms	3932	3483	468	9.8	3858	59.5	1162	401
2 - East Patient Rooms	3821	3405	468	10.4	3303	55.8	1011	367
3 - North Patient Rooms	2120	2420	288	5.0	1342	30.7	404	424
4 - South Patient Rooms	2121	2420	288	5.3	2042	33.4	625	400
5 - Patient Room Circulation	10221	1358	207	11.8	4301	61.9	1314	866
6 - Interior Therapy	9962	615	0	14.4	3205	67.0	968	692
7 - West Service Rooms	953	3135	0	3.4	1376	13.8	418	280
8 - Kitchen and Dining	3986	1928	366	22.3	3047	81.4	973	179
9 - South Offices	741	975	227	1.8	734	10.8	221	412
10 - East Therapy	4808	4342	1655	19.9	6225	110.7	1922	242
11 - Lobby	1384	668	322	5.0	1627	24.8	541	277
Totals:	44049	24749	4289	109.1	31060	549.8	9559	404

Table 5	: Zone-	Level I	Load	Comp	arison
I UNIC C	· Lone		Jona	comp	

Each zone's percentage of the total cooling load on the building, according to the model, is shown in Figure 3 on the following page. Zone 8, which houses kitchen and dining functions, has the highest percentage of load. This is likely not true and these results could be due to the high estimate of miscellaneous load in this space. Because of the size of the existing units, it was expected that about half of the total load would come from Zones 1-5, which include all patient rooms and patient

circulation. To improve this model, loads in these zones could be investigated to see if any load assumptions should be changed.

(5.0) Energy Consumption and Operating Costs

Using the results of the Trace load estimation, an analysis of the energy consumption and operating cost of the New Braunfels Regional Rehabilitation Hospital was performed. All systems were modeled as variable air volume systems with zone-level reheat. It is important to note that the accuracy of this yearly energy estimation is impossible to determine at the time of this report because the facility has only been occupied and operational for about four months.

(5.1) Annual Energy Consumption

Five main elements of the building contributed to the energy consumption of the facility. Direct expansion cooling, lights, supply and return air fans, and receptacle loads all contributed to the electricity consumed by NBRRH, while gas-fired space heating contributed to the natural gas consumed by the facility. A monthly summary of how each element used energy is shown in Table 6 on the next page, which is consistent with the results of the Trane Trace energy model.

Month	Cooling (kWh)	Lights (kWh)	Fans (kWh)	Receptacles (kWh)	Heating (therms)				
Jan	4002	12505	588	739	598				
Feb	2490	11295	369	667	541				
Mar	13428	12505	1905	739	112				
Apr	28958	12102	3996	715	47				
May	47601	12505	6351	739	21				
Jun	55883	12102	7279	715	7				
Jul	67256	12505	8946	739	3				
Aug	69962	12505	8943	739	3				
Sep	55478	12102	7343	715	11				
Oct	20730	12505	2867	739	72				
Nov	13874	12102	1973	715	99				
Dec	4768	12505	701	739	525				

Table 6: Monthly Energy Consumption

Total Electrical Consumption (kWh): 591629 Total Gas Consumption (therms): 2039

As expected, the cooling load dominates the electrical consumption of the facility in the summer months because of Texas's hot, humid climate. Because the facility is occupied year-round at all hours of the day, the lighting system accounts for consistent electricity draw each month as evident by Figure 4 below, which shows the breakdown of the building's monthly energy consumption. Accompanying this breakdown, Figure 5 shows the total percentage of annual electrical consumption for each component.

The yearly natural gas consumption profile for the New Braunfels Regional Rehabilitation Hospital is shown in Figure 6 on the following page. As seen previously in Table 6 above, there is almost no heating required in the facility during summer months and thus a negligible amount of natural gas is consumed.

Figure 6: Monthly Natural Gas Consumption

(5.2) Equipment Operating Costs

Using the energy analysis from the previous section, the building's annual operating cost was determined. Electricity and water utility rates for New Braunfels were acquired through the New Braunfels Utility website while an average cost of natural gas in Texas was acquired through Center Point Energy's website. Table 7 below summarizes the utility rate structure that was used for this economic analysis and the total associated electricity and natural gas costs.

Table 7. Monthly Energy Costs								
Month	Electricity Cost (\$/kWh)	Natural Gas Cost (\$/therm)	Total Electricity Cost (\$)	Heating Cost (\$)				
Jan	0.04	0.9573	713.36	572.47				
Feb	0.04	0.9573	592.84	517.90				
Mar	0.04	0.9573	1143.08	107.22				
Apr	0.04	0.9573	1830.84	44.99				
May	0.04	0.9573	2687.84	20.10				
Jun	0.05	0.9573	3798.95	6.70				
Jul	0.05	0.9573	4472.30	2.87				
Aug	0.05	0.9573	4607.45	2.87				
Sep	0.05	0.9573	3781.90	10.53				
Oct	0.04	0.9573	1473.64	68.93				
Nov	0.04	0.9573	1146.56	94.77				
Dec	0.04	0.9573	748.52	502.58				
		Totals:	\$26,997	\$1.952				

Fable	7:	Monthly	Energy	Costs
--------------	----	---------	--------	-------

A distribution of monthly operating costs, broken down by component, is shown on the following page in Figure 7. Although heating loads dominate the energy consumption in winter months, the total annual operating cost is dominated by the electricity used to cool the facility. An interesting feature to notice in this profile as opposed to the electrical energy consumption shown in Figure 4 is the sharper increase in cost from May to June and the sharper drop-off from September to October. This can be attributed to the cost of electricity rising in the summer months. This analysis shows that the system having the most effect on energy consumption and operating cost in the building is by far the cooling system.

(5.3) System Emissions

Important to consider in the system energy use of a building are the potentially harmful emissions associated with the use of this energy. The New Braunfels Regional Rehabilitation Hospital is located in the Electric Reliability Council of Texas (ERCOT) Interconnection, as shown below in Figure 8, taken from the National Renewable Energy Laboratory's (NREL's) Source Energy and Emission Factors for Energy Use in Buildings Report. That document also outlines the amount of energy generated in each region by each source of energy shown in Table 8, which is displayed on the following page.

Figure 8: North American Electric Reliability Corporation Interconnections Map

Energy Type	National %	Eastern %	Western %	ERCOT %	Alaska %	Hawaii %
Bituminous Coal	27.8	34.3	13.1	0.0	0.0	1.0
Subbitumious Coal	19.8	19.6	19.8	21.4	9.9	13.1
Lignite Coal	2.3	1.4	0.0	14.8	0.0	0.0
Natural Gas	18.3	12.7	27.4	49.4	55.5	1.5
Petroleum Fuels	2.8	3.6	0.5	0.5	11.5	77.4
Other Fossil Fuel	0.2	0.2	0.3	0.2	0.0	0.2
Nuclear	19.9	23.0	9.9	12.4	0.0	0.0
Hydro	6.8	3.4	24.6	0.3	23.0	0.8
Renewable Fuels	1.5	1.7	1.3	0.2	0.1	4.2
Geothermal	0.4	0.0	2.1	0.0	0.0	1.9
Wind	0.4	0.1	1.0	0.9	0.0	0.1
Solar (PV)	0.0	0.0	0.1	0.0	0.0	0.0
Fossil Fuel Total	71.2	71.8	60.9	86.2	76.9	93.1
Renewable (non hydro	2.2	1.8	4.6	1.1	0.1	6.1

 Table 8: Percent Electricity Generation by Energy Type

The NREL's Energy and Emissions Report also specifies the volume of natural gas that needs to be delivered to a site in order to produce a certain capacity of heating. The calculation of delivered natural gas for NBRRH is shown below in Table 9 to be used later in the total emissions calculation.

Table 9: Delivered Natural Gas Calculation										
Heating Capacity (BTU)	Natural Gas Heating Value (BTU/ft ³)	Natural Gas Delivered (ft ³)								
549610	1010	544								

Below, Table 10 shows the emission factors associated with the use of electrical energy and on-site combustion of natural gas for twelve prominent pollutants and the calculated annual mass of those pollutants associated with each form of energy. Shown graphically in Figure 9 on the next page, the most abundant pollutants associated with the energy used by the facility are CO_2 , CO_{2e} (equivalent carbon dioxide), and solid waste.

Pollutant	Electricity Emission Factor (lb pollutant/kWh electricity)	Mass of Pollutant (lbm/year)	Pre-Combustion Emission Factor (lb pollutant/1000 ft ³ Natural Gas)	Mass of Pollutant (lbm/year)		
CO _{2e}	1.84E+00	1088597.36	2.78E+01	15.12		
CO_2	1.71E+00	1011685.59	1.16E+01	6.31		
CH_4	5.30E-03	3135.63	7.04E+01	38.30		
N ₂ O	4.02E-05	23.78	2.35E-04	1.28E-04		
NO _X	2.20E-03	1301.58	1.64E-02	8.92E-03		
SO _X	9.70E-03	5738.80	1.22E+00	0.66		
СО	9.07E-04	536.61	1.36E-02	7.40E-03		
TNMOC	7.44E-05	44.02	4.56E-05	2.48E-05		
Lead	1.42E-07	8.40E-02	2.41E-07	1.31E-07		
Mercury	2.79E-08	1.65E-02	5.51E-08	3.00E-08		
PM10	1.30E-04	76.91	8.17E-04	4.44E-04		
Solid Waste	1.66E-01	98210.41	4.21E+02	229.02		
Delivered Electricity Delivered Fuel = 544	v = 591,629 kWh 4 ft ³ Natural Gas					

Though the carbon dioxide values dominate the above figure, the levels of the other pollutants should not be ignored. Sulfur oxides and nitrogen oxides in particular are common results of the combustion process and are significant contributors to the greenhouse effect, acid rain, and local air pollution.

Appendix A: Resources

- ANSI/ASHRAE (2010). Standard 62.1 2004, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.
- ANSI/ASHRAE (2010). Standard 90.1 2004, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.
- ASHRAE (2009). 2005 ASHRAE Handbook Fundamentals. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.
- ASHRAE (2007). 2007 ASHRAE Handbook HVAC Applications. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.
- Center Point Energy. Natural Gas and Electricity. 2011. http://www.centerpointenergy.com/services/naturalgas/business/naturalgasprices/energycostcomparison.
- National Renewable Energy Laboratory. *Source Energy and Emission Factors for Energy Use in Buildings*. M. Deru and P. Torcellini. 2007.
- New Braunfels Utilies. Current Rates, 2009. http://www.nbutexas.com
- Trane Trace 700 v.6.2.6.5 (2010) Tyler, TX, United States of America.
- United States Energy Information Administration. September, 2008. CBECS. Commercial Energy Use & Costs.
- United States Environmental Protection Agency. *Air Pollution Control Orientation Course*. 2010. http://www.epa.gov/eogapti1/course422/ap5.html.

HR

Humidity ratio, grains of moisture per lb of dry air

2009 ASHRAE Handbook - Fundamentals (IP) © 2004													009 ASH	RAE, Inc.
				s	AN ANT		NTL AP,	TX, US	A				WMO¢:	722530
Lat 29.53N	Long:	98.46W	Elev	810	StdP:	14.27		Time Zone	: -6.00 (N	AC)	Period:	82-06	WBAN:	12921
Annual Heating and	Humidifica	tion Design	Conditions											
Coldest Heat	ng DB		Huni	dification D	P/MCOB an	d HR		—	Coldest more	th WSMCC	8	MCWS	PCWD	1
Month 99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCOB	W8	MCOB	W8	MCDB	00 99. MCW0	PCWD	
1 27.4	31.6	10.3	9.6	38.9	15.6	12.5	44.6	24.4	46.8	20.9	50.2	8.3	10	
Annual Cooling, Deh	umidificati	ion, and Entr	halpy Desig	n Conditi	006									
Hottest			CoolingD	BIMCWB			-		Evaporatio	n WB/MCD	8		MCWS	POWD
Month Month	0	.4%	1	95 1. M.C.M.B.	2	5	0.4	4%		1%	2	%	to D.4	% DB
\$ 20.1	98.5	73.5	96.9	73.6	95.2	73.7	78.0	88.0	77.3	87.1	76.7	86.2	9.6	160
		Dehumidifica	ation DP/III	COB and H	R					Enthals	y/MCOB			Hours
0.4%	MCDB	DP	1%	MCDB	DP	2%	мсов	Enth	MCDB	Erth	MCDB	Enth 2	% MCDB	8 to 4 & 55/69
75.9 139.4	80.1	75.2	136.0	79.8	74.4	132.6	79.8	42.0	88.0	41.2	86.9	40.6	86.0	690
Extreme Annual Des	Ign Conditi	lons												
		Extreme	· · · ·	Extreme	Appual DB		· · · · ·		D-Yes/ B	eburo Period	Values of F	vireme DB	51	
Extreme Annua	I WS	Max	54	can	Standard	deviation	n=5	years	n=10	years	n=20	years	n=50	years
1% 2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
20.2 18.2	16.6	82.9	21.5	102.2	5.8	2.6	17.4	104.1	14.0	105.6	10.8	107.1	6.6	109.0
moning chinado be	aigin Collai	Annual	120	Eab	Mar	4.54	Mari	1.0	. No.	410	0.00	0.4	Neu	0.00
	Tavg	69.5	52.2	55.6	62.1	69.5	76.7	82.0	84.6	85.1	79.7	71.2	61.1	53.1
	8d		9.13	9.55	8.47	7.10	5.30	3.77	2.95	2.97	5.64	7.44	9.10	9.95
Temperatures,	HDDS0	239	83	47	13	39	0	0	0	0	0	1 30	15	80 386
and	CDDS0	7350	150	203	389	586	828	961	1071	1089	891	658	348	175
Degree-Hours	CDD65	3115	8	20	65	175	364	511	606	624	443	221	62	16
	CDH74 CDH80	32766	44	1/2	442	1390	3224	2666	7251	7674	4688	1870	341	3
	Contract	DB	78.8	85.4	87.1	93.2	96.5	99.2	100.4	100.2	99.6	92.2	85.0	79.1
Monthly Design	0.4%	MCWB	60.5	60.9	64.8	68.1	72.5	74.7	72.9	73.7	72.3	71.6	68.6	63.9
Dry Bulb	2%	DB	74.3	79.0	82.4	88.1	93.0	96.3	98.3	98.4	95.6	89.2	81.0	75.2
and Mean Coincident		DB	71.0	74.5	79.0	84.7	89.9	93.8	96.4	96.8	93.1	86.5	78.0	72.1
Wet Bulb	5%	MOWB	60.1	60.3	63.8	67.9	72.8	74.3	73.8	73.8	73.2	70.3	66.5	62.3
Temperatures	10%	DB	67.7	70.6	75.3	81.9	87.0	91.5	94.2	95.1	90.6	83.3	74.9	69.0
		MOWB	39.8	60.4	62.3	57.1	70.0	74.4	74.0	74.0	70.0	63.6	65.5	62.1
	0.4%	MCDB	71.3	73.8	78.6	83.5	88.3	89.5	88.7	88.9	86.3	83.5	78.6	72.7
Wet Bulb	784	WB	66.5	67.3	69.7	73.4	76.7	77.8	77.6	77.4	77.1	75.5	71.5	67.8
and Mann Colocidant		MCDB	69.8	71.9	75.3	80.9	86.0	88.2	87.9	87.3	85.2	81.9	76.3	71.1
Dry Bulb	5%	MCDB	68.1	69.7	73.9	79.1	83.6	87.0	86.9	86.7	84.2	80.8	74.8	69.7
Temperatures	10%	WB	61.1	63.1	66.9	70.8	74.4	76.3	76.3	76.2	75.5	73.0	68.5	63.7
		MCDB	66.4	69.0	72.4	11.3	82.5	85.7	85.8	86.0	83.3	79.3	73.3	68.1
Mana Dally		MOBR MCOBR	20.7	20.8	21.0	21.1	18.9	18.7	19.1	20.1	20.1	20.4	20.3	20.5
Temperature	5% D8	MCWBR	15.4	13.9	12.0	11.3	7.1	5.5	4.6	4.6	5.8	8.2	11.1	13.7
Range	5% W8	MCDBR	17.6	17.9	17.1	18.0	17.7	18.0	18.4	19.3	17.7	16.1	16.4	17.1
B		MCWBR	13.7	12.5	10.0	9.7	1.3	6.1	4.1	5.0	5.9	7.6	11.2	13.2
Clear 8ky		aud	2.422	0.351	2.308	0.395	0.421	2.174	0.441	0.449	0.423	0.368	0.345	0.331
Solar Irradiance	Ebr	n,noon	285	290	292	286	277	271	269	267	270	281	280	282
	Edh	h,noon	33	36	41	45	47	48	48	48	43	35	32	29
CDDn Cooling de CDHn Cooling de DB Dry buib te DP Dew point Ebn,hoon ; Zortal Int Elev Elevstion, Enth Enthalpy, 5 HDDn Heating de Hours 844 & 55/65	gree-days b gree-hours imperature, temperature beam norm idiances at t t Boulb gree-days b Number	base n°F, °F+ base n°F, °F+ rF e, °F nal and diffusi solar noon, B base n°F, °F+ of hours beta	day -hour e hori- turott2 day reen 8 a.c.	Lat Long MCDB MCDBR MCVB MCVB MCVBR MCVBR MCVB MDBR PCVD	Latitude, * Longitude, Mean coin Mean coin Mean coin Mean coin Mean coin Mean coin Mean dry R	cident dry b cident dry b cident dew cident wet b cident with cident wind builb temp, r colncident	uib tempera uib temp. ra point tempera vuib temp. ra speed, mph ange, "F vind directio	ature, "F ange, "F rature, "F ature, "F ange, "F	Period Od OtdP taub taub Tavg Time Zone WB WBAN WMOst	Year: use Standard (Standard (Clear sky (Average to Hours ahe Wet built to Weather B World Met	d to calculat deviation of i pressure at i optical depti imperature, ad or behink emperature, ureau Army ecrological	te the design daily average station eleven in for diffuse "F d UTC, and "F Navy numit Organization	n conditions ge temperat ation, psi rradiance irradiance time zone o ber n number	ure, *F
and 4 p.m.	with DB bet	ween 55 and	69 *F	2010	0 = North	90 = East	and cirecto	··· ·	WS	Wind scee	d, moh	organiza:00	number	

Appendix C: Interior Zone Checksums

	COOLING	COIL PEAK	((CLG SPAC	E PEAK		1	HEATING	COIL	PEAK	-	TEMP	ERATUR	ES	
Peak	ed at Time: Outside Air:	OADB/WB/	WHr: 8 / 14 HR: 96 / 78 /	124	Mo/Hr. OADB:	7/19 90			Mo/Hr. OADB:	Heati 30	ng Design	n	SADB Ra Plenum	Cooling 58.6 79.4	Heat	ing 1.4 6.1
	Sens. + Lat Btu/h	Plenum Sens. + Lat Btu/h	Net Total Btuh	Percent Of Total (%)	Sensible Btu/h	Percent Of Total (%)			Space Peak Space Sens Btuh		Coil Peak Tot Sens Btu/h	Of Total	Return Ret/OA Fn MtrTD	79.4 83.7 0.0	04	8.1 2.3 0.0
Envelope Loads Skylite Solar Skylite Cond		8	8	0	8	0	Envelope I Skylite S Skylite 0	loads olar ond	8		8	000	Fn BldTD Fn Frict	0.0		0.0
Roof Cond Glass Solar Glass/Door Cor	3,468 1,314	29,283	29,283 3,468 1,314	21	2,420 1,195	32	Glass So Glass/Do	lar xor Cond	-2,915	1	-13,153 -2,915	2124 000 471	AIF	Cooling	Hea	ting
Wall Cond Partition/Door Floor	490	1,453	1,943	0	641 0 0	00	Partition Floor	Door	-544		-2,353	3 3 80 0 000 0 000	Diffuser Terminal	4,301		.314
Adjacent Floor Infiltration Sub Total ==>	5,273	30,736	36,009	0 25	4,256	0	Adjacent Infiltratio Sub Tota	floor n i/==>	-3,459		-18,420	000 000 000 29.74	Sec Fan Nom Vent	953	3	0 866
Internal Loads							Internal Lo	ads					AHU Vent	953	3	866
Lights People Misc	7,269 16,136 27,187	1,817 0 0	9,086 16,136 27,187	6 11 19	24,633 9,438 25,689	32 12 34	Lights People Misc		0	7	000	000 000 000 000	MinStop/Rh Return Exhaust	1,314 4,301 953	1	,314 ,314 866
Sub Total ==>	50,592	1,817	52,409	37	59,638	78	Sub Tota	/==>	0		C	000	Rm Exh Auxiliary	0		00
Ceiling Load Ventilation Load	d 14,158	-14,158	58,186	41	12,513	16	Ceiling Lo Ventilation	ad Load ns Heat	-12,773		-37,481	000 60.52	Leakage Dwn Leakage Ups	0		0
Dehumid. Ov Si Ov/Undr Sizing	zing	4 509	0	000	0	0	Ov/Undr S Exhaust H	izing eat	ő		3,696	000	ENGIN	EERING	CKS	_
Sup. Fan Heat Ret. Fan Heat Duct Heat Pkun		0	-,	000			RA Prehea Additional System Pla	t Diff. Reheat enum Heat			-3,620	5.85 000 5.52	% OA	Cooling 22.2 0.42	Heat 6 0	ing 5.9
Underflr Sup Ht Supply Air Leak	Pkup age	0	Ő	Ö		_	Underfir S Supply Air	up Ht Pkup Leakage	_		0	000	cfm/ton ft²/ton Btu/br-ft²	363.20 863.16 13.90	.4	06
Grand Total ==>	> 70,023	13,887	142,097	100.00	76,407	100.00	Grand To:	al ==>	-16,232		-61,931	100.00	No. People	58		
1	otal Capacity ton MBr	COOLING Sens Cap. MBh	COIL SEL Coil Airflow	ECTION Enter DE	WB/HR	Leave	DB/WB/HR *F gr/lb	Gre	AREAS	Gla	ss (%)	HE	ATING COIL CapacityCo MBh	SELECTI oil Airflow cfm	ION Ent *F	Lvg
Main Clg Aux Clg	11.8 142.1 0.0 0.0	98.4	3,564 D	83.7 68	2 82.0	58.6 5	5.7 63.7 0.0 0.0	Floor Part	10,221	1		Main Htg Aux Htg	-32.5	1,314 0	58.6	81.4
Opt Vent	0.0 0.0	0.0	D	0.0 0.	0.0	0.0	0.0 0.0	Int Door ExFir	0			Preheat	-29.5	953	30.0	58.6
Total	11.8 142.1							Roof Wall	10,221 1,358	207 0	0 15 0	Humidif Opt Vent Total	0.0	0	0.0	0.0

Zone Checksums By ACADEMIC

Project Name: Dataset Name: TECH2.trc

RACE® 700 v82.6.5 calculated at 08:29 PM on 10/17/2011 Alternative -1 System Checksums Report Page 7 of 12

	COOLING	COIL PEAK			CLG SPACE	EPEAK			HEATING COIL PEAK				PERATUR	ES
Peak	Peaked at Time: Mo/Hr: 8 / 15 Outside Air: 0ADB/WB/HR: 96 / 78 / 11		18	Mo/Hr: OADB:	7/20 87			Mo/Hr: I OADB:	Heating De 30	sign	SADB	Cooling 56.1	Heating	
	Sens. + Lat.	Plenum Sens. + Lat	Net Total	Percent Of Total	Sensible Bturb	Percent Of Total			Space Peak Space Sens	Coil P Tot S	eak Perce	nt Return al Ret/OA	78.9	66.9 32.4
Envelope Load Skylite Solar Skylite Cond	s 0	0	000	0	000	000	Envelope I Skylite S Skylite C	oads olar ond	8		0 0.0	Fn BidTD Fn Frict	0.0	0.0
Glass Solar Glass/Door Co	ed 00	10,000	10,000	0	00	0	Glass So	lar or Cond	ŏ	-0.	0 0.0	A	IRFLOWS	
Wall Cond Partition Door	422	779	1,201	100	234	100	Wall Cor Partition	d Door	-333		947 2.5	00 Diffuser	Cooling 1,720	Heating 51
Adjacent Floor	0	0	17 256	000	0 0 234	001	Adjacent Infiltratio Sub Tota	Floor	-333	-7	0 0.0	00 Main Fan 00 Sec Fan 20 Nom Vent	1;720	51
Internal Loads		10,000			201		Internal Lo	ads				AHU Vent	83	48
Lights People Misc	3,748 19,159 5,179	937 0 0	4,685 19,159 5,179	5 21 8	14,055 11,324 4,811	40 32 14	Lights People Misc		000		0 0.0	00 MinStop/Rh 00 Return 00 Exhaust	518 1,720 83	51 51 48
Sub Total ==>	28,086	937	29,023	32	30,190	86	Sub Tota		-5.032		0 0.0	Auxiliary	_	
Ventilation Loa Adj Air Trans H	d 0,370 leat 0	-0,370	47,630	53 0	4./5/	0	Ventilation Adj Air Tra	Load ns Heat	0	-20,	977 57.2	29 Leakage Up	is (
Dehumid. Ov S Ov/Undr Sizing Exhaust Heat Sup. Fan Heat	izing 0	-3,489	-3,489	00400	0	0	Ov/Undr S Exhaust H OA Prehea RA Prehea	eat t Diff. t Diff.	0	19	0 0.0 606 -4.3 779 26.7 387 1.0	00 89 71 06	Cooling	CKS Heating
Ret. Fan Heat Duct Heat Pkur Underfir Sup H	Pkup	0	000	000			Additional System Plu Underfir S	Reheat enum Heat up Ht Pkup			704 -1.9 0 0.0	2 cfm/ft* 0 cfm/ton	48.3 0.33 228.29	0.10
Grand Total ==	×age > 34,883	7,907	90,421	100.00	35,181	100.00	Grand Tot	Leakage	-5,384	-38,	618 100.0	00 ft"/ton Btu/hr-ft" 00 No. People	088.25 17.44 65	-7.06
	Total Capacity ton MBh	COOLING Sens Cap. (MBh	COIL SEL	ECTIOI Enter D	N BAWB/HR 'F gr/lb	Leave	BAWB/HR	Gr	AREAS	Glass	Н	EATING COI Capacity MBh	L SELECT Coil Airflow	ON Ent Ly
Main Clg Aux Clg	7.5 90.4	53.9	1,323	89.7 72	29 98.8	56.1 5	1.9 52.5	Floor	5,186		Main H	tg -13.2	518	56.1 79
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Door	0		Prehea	t -23.5	831	30.0 58
Total	7.5 90.4							Roof Wall Ext Doo	5,188 450	0 0	Humid Opt Ve Total	if 0.0 nt 0.0 -36.6	8	0.0 0

Zone Checksums By ACADEMIC

Project Name: Dataset Name: TECH2.trc

RACE® 700 v6.2.6.5 calculated at 06:29 PM on 10/17/2011 Alternative - 1 System Checksums Report Page 8 of 12

	COOLING	COIL	EAK		(CLG SPAC	E PEAK			HEATING C	OIL PEAK		TEMP	ERATUR	ES	
Peak	ed at Time: Outside Air:	OAD	Mo/f	Hr: 8/14 R: 96/78/	124	Mo/Hr OADB	7/20 87			Mo/Hr: I OADB:	Heating Desig 30	n	SADB Ra Plenum	Cooling 50.5 79.2	Heatin 83. 65.	ng 3.3 5.9
	Sens. + La Btu	t. Sens.	+ Lat Btu/h	Net Total Btu/h	Percent Of Total (%)	Sensible Btu/h	Percent Of Total (%)			Space Peak Space Sens Btu'h	Coil Peal Tot Sense Btul	Of Total	Return Ret/OA Fn MtrTD	79.2 88.3 0.0	68	5.9
Envelope Load Skylite Solar Skylite Cond	s i	0	00	8	0	8	00	Envelope I Skylite S Skylite C	oads olar ond	8	11.	0.00	Fn BldTD Fn Frict	0.0	-	0.0
Glass Solar Glass/Door Co	nd	000	0	13,706	0	000	000	Glass So Glass/Do	lar or Cond	000	-6,11	20.17 0.00 0.00	AIR	FLOWS	Heat	ting
Partition/Door Floor	_	0000	319	0	000	0	0000	Partition	Door Elect	-122	4	0.00	Diffuser Terminal Main Fan	1,480 1,480 1,480		446
Infiltration Sub Total =>>	17	0	,025	14,197	0	0	0	Infiltration Sub Tota	==>	-122	-6,45	0.00	SecFan Nom Vent	653	3	0 358 359
Internal Loads								Internal Lo	ads				Infil	~	5	0
Lights People Misc	3.6 14,8 11,8	884	905	4,523 14,858 11,884	5 18 14	13,559 8,841 11,039	35 23 28	Lights People Misc		0		0.00	MinStop/Rh Return Exhaust	445 1,489 653	3	445 448 358
Sub Total ==>	30,3	1	905	31,265	38	33,440	86	Sub Tota	(==>	0	(0.00	Rm Exh Auxiliary	6		0
Ceiling Load Ventilation Loa	6,3	0	0,326	39,758	48	5,369	14	Ceiling Los Ventilation	ad Load	-6,288	-15,47	0.00	Leakage Dwn Leakage Ups	000	5	0
Dehumid. Ov S Ov/Undr Sizing	izing	0	052	000	000	0	0	Ov/Undr Si Exhaust H	zing eat	ő	1,60	0.00	ENGINE	ERING	CKS	_
Sup. Fan Heat Ret. Fan Heat			0	-2,803	1000			RA Prehea Additional System Ple	t Diff. Reheat		-1,45	4.81 0.00 8.47	% OA cfm/ft ²	Cooling 44.5 0.31	Heati 80	ng 0.3
Underfir SupH	Pkup		0	0	0			Underfir S	up Ht Pkup Leakage	•	-	0.00	cfmton ft ² /ten	214.28		
Grand Total ==	> 36,8	9	6,650	82,265	100.00	38,898	100.00	Grand Tot	al ==>	-6,410	-30,29	100.00	Btu/hr-ft ^a No. People	17.22 54	-8.	.34
	Fotal Capaci	COO Sens	LING Cap. C	COIL SEL	ECTION Enter DE	WB/HR	Leave	DB/WB/HR	Gr	AREAS	Glass	HE	ATING COIL CapacityCo	SELECT	ION	Ly
Main Clg	6.9 82	.3	51.0	1,165	88.3 72	8 98.9	50.5 5	0.4 58.0	Floor	4,776	(76)	Main Htg	-15.8	445	50.5	83.
Aux Clg Opt Vent	0.0 0	0	0.0	0	0.0 0.0	0 0.0	0.0	0.0 0.0	Part Int Door	0	-	Aux Htg Preheat	-14.5	0	0.0	0.
Total	6.9 82	3	200						ExFlr Roof Wall	4.778 165	8 8	Humidif Opt Vent	0.0	0	0.0	0.

Zone Checksums By ACADEMIC

Project Name: Dataset Name: TECH2.tro

RACE® 700 v8.2.6.5 calculated at 08:29 PM on 10/17/2011 Alternative - 1 System Checksums Report Page 9 of 12